General Hörmander and Mikhlin Conditions for Multipliers of Besov Spaces

نویسنده

  • RISHAD SHAHMUROV
چکیده

Abstract. Here a new condition for the geometry of Banach spaces is introduced and the operator–valued Fourier multiplier theorems in weighted Besov spaces are obtained. Particularly, connections between the geometry of Banach spaces and Hörmander-Mikhlin conditions are established. As an application of main results the regularity properties of degenerate elliptic differential operator equations are investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Functions Associated with Fourier Multipliers of Mikhlin-hörmander Type

We show that maximal operators formed by dilations of Mikhlin-Hörmander multipliers are typically not bounded on L(R). We also give rather weak conditions in terms of the decay of such multipliers under which L boundedness of the maximal operators holds.

متن کامل

On Maximal Functions for Mikhlin-hörmander Multipliers

Given Mikhlin-Hörmander multipliers mi, i = 1, . . . , N , with uniform estimates we prove an optimal p log(N + 1) bound in L for the maximal function supi |F[mi b f ]| and related bounds for maximal functions generated by dilations. These improve results in [7].

متن کامل

The Hadamard Fractional Power in Mikhlin-besov Inclusions

Banach algebras defined by fractional Mikhlin-type conditions are continuously contained in Besov spaces, in such a way that the difference between the corresponding degrees of derivation can be made arbitrarily small. In this note a proof of this inclusion is given which is based on the Hadamard fractional operator and its adjoint integration operator on the positive half-line. §

متن کامل

Besov Spaces for Schrödinger Operators with Barrier Potentials

Let H = −△ + V be a Schrödinger operator on the real line, where V = εχ[−1,1]. We define the Besov spaces for H by developing the associated Littlewood-Paley theory. This theory depends on the decay estimates of the spectral operator φj(H) in the high and low energies. We also prove a Mikhlin-Hörmander type multiplier theorem on these spaces, including the L boundedness result. Our approach has...

متن کامل

Multipliers on Weighted Besov Spaces of Analytic Functions

We characterize the space of multipliers between certain weighted Besov spaces of analytic functions. This extend and give a new proof of a result of Wojtaszczyk about multipliers between Bergman spaces. Introduction. P. Wojtaszczyk [W], using certain factorization theorems due to Maurey and Grothendieck, proved the following results: Let α > 0, 0 < p ≤ 2 ≤ q < ∞ and 1r = 1 p − 1q . (0.1) (Bq, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008